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Abstract The main objectives of this study were: (1) to
develop models which combine variables of genotype,
environment and attribute in regression models
(GEAR) for increasing the accuracy of predicted cell-
means of the genotype]environment two-way table,
and (2) to compare GEAR models with the additive
main effects and multiplicative interaction (AMMI)
model. GEAR models were developed by regressing the
observed values on principal components of genotypes
(PCG) and environments (PCE). Genetic and environ-
mental attributes were also added to the GEAR
models. GEAR and AMMI models were applied to
multi-environment trials of triticale (trial 1), maize (trial
2) and broad beans (trial 3). The random data-splitting
and cross-validation procedure was used and the root
mean square-predicted difference (RMSPD) was com-
puted to validate each model. GEAR models increased
the accuracy of predicted cell-means. Attribute vari-
ables, such as soil pH, rainfall, altitude and class of
genotype, did not improve the best GEAR model of
trial 1, but they increased the predictive value of other
models. Two iterations of the computer program fur-
ther refined the best GEAR model. Based on the
RMSPD criterion, GEAR models were as good as, or
better than, some AMMI truncated models for predic-
ting cell-means. The approximate accuracy gain factors
(GF) of the best GEAR model over the raw data were
2.08, 3.02 and 2.22, for trials 1, 2 and 3, respectively. The
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GF of the best AMMI model were 1.74, 2.28 and 2.32
for trials 1, 2 and 3, respectively. The analysis of vari-
ance of the predicted cell means showed that the geno-
type]environment interaction (GEI) variance was
reduced by about 20% in trial 1 and 81% in trial 2. A bias
associated with the predicted cell reduced the GEI
variability. Advantages of using GEAR models in muti-
environment cultivar trials are that they: (1) increase
the precision of cell-mean estimates and (2) reduce the
GEI variance and increase trait heritability.

Key words Genotype ] environment interaction (GEI) ·
AMMI · GEI variance

Introduction

Conventional additive models for assessing geno-
type]environment interaction (GEI) and estimating
the realized performance of a genotype in environments
include the overall mean, the genotype and environ-
ment effects, the GEI effect and the error term asso-
ciated with the observation. Experimental evidence has
shown that GEI is important in estimating genetic
variability (Hallauer and Miranda 1981). Increasing the
number of testing environments and replications has
been suggested as a way to reduce the non-genetic
component of variance in phenotypic means and to
increase the heritability of traits in selection programs.

Response levels of crop cultivars in a given environ-
ment can be better predicted using multiplicative mod-
els such as the additive main effects and multiplicative
interaction model (AMMI) (Gauch 1988; Gauch and
Zobel 1988, 1989), the complete multiplicative model
(COMM), the genotypes regression model (GREG), the
sites regression model (SREG), and the shifted multipli-
cative model (SHMM) (Cornelius et al. 1992; Cornelius
1993; Cornelius et al. 1993; Crossa and Cornelius 1993;
Cornelius and Crossa 1995; Cornelius et al. 1996). One
way to determine the number of multiplicative terms to



be retained in the models is by random data-splitting
and cross-validation (Gauch 1988; Gauch and Zobel
1988) by which r

.
replicates of each genotype]envi-

ronment combination are used for modelling and
r
7
replicates are used for validation. However, Cornel-

ius et al. (1993) and Cornelius and Crossa (1995) sug-
gested that an hypothesis test using F-type statistics to
determine the optimal number of significant multiplica-
tive terms and/or shrinkage estimates of multiplicative
models would eliminate the need for cross-validation as
a criterion for model choice.

The cross-validation procedure predicts a true cell-
mean by combining the direct information given by the
empirical mean of all observations in a cell with in-
direct information which can be extracted from the
other cells. The PRESS statistics (Allen 1971), on the
other hand, predict the value of missing cells one at
a time by using all the information available from the
other cells, and should identify the multiplicative model
which most effectively extracts indirect information
from the other cells (Cornelius et al. 1993).

A different approach for predicting the true value of
a two-way table of genotype]environment cell-means
would be to characterize the environments and esti-
mate the effects of environmental variables on the
genotype in such way that the genotype value could be
predicted by the environmental effects. These variables
may be environmental attribute variables (e.g., temper-
ature, rainfall, soil pH, disease and insect attacks, etc.),
but can also be the differential behavior of a set of
genotypes across environments. These genotype vari-
ables could be transformed to principal components
(PCG) to condense most of their variability into a few
manageable variables. One problem, of course, is to
find the set of genotypes that best characterize the
environments. Using the same reasoning as above, the
genotypes can also be characterized by pedigree, by
restricted fragment length polymorphism (RFLP)
bands, and by quantitative trait locus (QTL) effects, but
also by the differential performance of a set of environ-
ments on the genotypes. The environment variables can
be also transformed to principal components (PCE).

This approach, which attempts to characterize
genotypic behavior by environmental variation and
environmental performance by genotypic variation,
also utilizes the indirect information in other cells to
predict the true values of genotype]environment cell-
means of the two-way table. The advantage of this
approach over the estimation using the multiplicative
models such as AMMI is that environmental and/or
genotypic attribute variables can be included in the
predictive model.

The objectives of this paper were to: (1) develop
statistical models that allow the characterization of
genotypic behavior, based on environmental variation,
and reciprocally explain environmental performance
according to genotypic variation by combining vari-
ables of genotypes, environments and attributes in a re-

gression model (GEAR); and (2) compare the predictive
assessment of GEAR with AMMI models, using the
random data-splitting and cross-validation procedure
on data from three multi-environment crop trials.

Materials and methods

Theory of the genotype-environment attribute-regression
(GEAR) models

Consider a two-way table where m rows and n columns are the
genotypes and environments, respectively, from a multi-environ-
ment trial and where the elements of the matrix are the cell means.
Principal component (PC) analysis is applied to the matrix where
genotypes and environments can be optionally considered either as
observations (rows) or variables (columns).

First, consider genotypes as observations and environments as
variables; the matrix is m]n. It follows, from principal component
algebra, that
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(for j"1, 2,2 , n and i"1, 22, m), where y
ij

is the value of the
i5) genotype at the j5) environment; y

i.
and y

.j
are the means of the

i5) genotype and the j5) environment, respectively; PCE
*,

is the value
of the k5) component (axis) for the i5) genotype when environments
are considered variables; PCG

jk
is the value of the k5) axis for the j5)

environment when genotypes are taken as variables; a
+,

is the k5)

element of the eigenvector for the j5) environment variable; b
*,

is the
k5) element of the eigenvector for the i5) genotype variable; e

*+
is the

error term associated with the i5) genotype in the j5) environment;
k"1,2 , p, and k"1, 2,2 , q are the number of multiplicative
terms (principal components) used in Eqs. 1 and 2, respectively.

Model 1

The first multiplicative term of Eq. 1 (a
j1

PCE
i1
) is the regression of

genotypes (tested in the j5) environment) on the first PCE. Similarly,
the first multiplicative term of Eq. 2 (b

i1
PCG

j1
) is the regression of

environments (across the i5) genotype) on the first PCG. Equations
1 and 2 estimated two different values of the cell-mean (y

ij
) ; however,

a unique predicted value could be obtained if the two equations were
simultaneously combined in one model.

Consider for simplicity that only one cell-mean, corresponding to
the i5) genotype (row) in the j5) environment (column), is to be
predicted. In the following combined regression model all observa-
tions of row i and column j, except that from the element itself (y

ij
),

are used for prediction

y"l#xb#Gb#Ea#e, (3)

where column vector y with dimensions (n#m)]1 is formed by the
n observations of row i followed by the m observations of column j,
except for the two y

ij
observations which were assigned values of

0 (see Appendix); l is a vector formed by the mean of genotype
i repeated n times, followed by the mean of environment j repeated
m times; x is a vector where all elements have value 0, except the two
elements corresponding to the y

ij
observations which have a value of
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!1; b is a vector with a single element for the predicted value of
y
ij

(y
ij
); G is a (n#m)]k matrix where the first n rows are the first

k PCs taking genotypes as variables, and the following m rows have
value 0; E is a (n#m)]q matrix where the first n rows have the
value 0 and the following m rows are the first q PCs taking environ-
ments as variables; a and b are vectors of the partial regression
coefficients of the variables included in E and G, respectively; e is the
vector of random error effects for the observations.
Combining appropriate matrices, Eq. 3 can be also written as

y"l#Xv#e , (4)

where

X"[x : E :G] and v@"[b@ :a@ :b@].

Since y
ij

is included in v, the predicted value of y
ij

can be estimated
from Eq. 4 by applying least-squares algebra such that

v"[X@X]~1X(y!l)

Note that in model 1 only PCE and PCG variables are used for
prediction and no environmental- or genotypic-attributes are added
to the model.

Model 2

If environmental-attribute variables, such as soil pH, soil fertility
levels, rainfall, daily temperature, altitude, etc., and genetic-at-
tributes such as RFLP bands, QTL or pedigree relationships are
available, Model 1 can be expanded to include these variables. Then,
Eq. 4 becomes:

y"l#Xv#Tu#e (5)

where T"[H :K]; u@"[h@ : k@]; H is a (n#m)]r matrix formed
with the values of the r environmental-attribute variables for the first
n rows and the value 0 for the following m rows ( see Appendix); K is
a (n#m)]s matrix which has the value 0 for the first n rows and the
corresponding values of the genetic-attribute variables for the fol-
lowing m rows; h is a r]1 vector of environmental-attribute effects;
k is a s]1 vector of genetic-attribute effects.

In general, variables in the H matrix are of the continuous type,
while variables in the K matrix are generally from the class type. If
continuous variables are transformed into principal components
(PC), only the first few PC will be considered in the model. Class
variables are treated as dummy variables.

The predicted value y
ij

included in v can be estimated by applying
least-squares analysis to Eq. 5.

Several regression strategies are possible:
Strategy A: only PCE and PCG variables from the X matrix are
entered into the regression model. This strategy is equivalent to
applying GEAR Model 1 (Eq. 4) to the data, since it does not include
any attribute-variables.
Strategy B: variables from X are retained in the model, and only the
attribute-variables from matrix T (Model 2, Eq. 5) are further added
to the model using stepwise regression (Draper and Smith 1966).
Strategy C: the PCE and PCG variables from matrix X and the
attribute variables from matrix T are all entered in the model using
stepwise regression.

Computer programs were written in SAS (1989) for Eqs. 4 and 5 to
make predictions of true cell values. Each observed value was
predicted under strategies A, B and C. Several predicted values were
computed for strategy A using different combinations of the first
PCG and PCE. Predicted values for strategies B and C were only
programmed for the first three PCG and PCE, but predictions for
other combinations can be easily added to the program. The envir-
onmental-attribute variables are transformed to principal compo-
nents (PCEAV).

Random data-splitting and cross-validation

Cross-validation of the models was performed by partitioning the
data into model (r

.
) and validation data (r

7
). Two replicates were

randomly selected for each genotype at each site to form the model
data (r

.
"2) for each trial, and the remaining two replicates from

trials 1 and 2 (r
7
"2) and one replicate from trial 3 (r

7
"1) com-

prised the validation data. The root mean square difference of the
predicted values (RMSPD), as described by Gauch and Zobel (1988)
and Crossa et al. (1990), was used as the criterion for validating the
models. The RMSPD over several data sets was calculated as the
difference between the predicted value of model data and the replica-
tion means of validation data squared and summed over all geno-
type and environment (GE) combinations and data sets. This sum
was divided by the number of GE combinations and data sets, and
the square root was taken.

In addition to the GEAR models, the following AMMI models
were fitted to the data of each trial: AMMI

0
, which includes only the

genotype and environment main effects, and AMMI
1
, AMMI

2
and

AMMI
3

which combine the main effects from AMMI
0

with part of
the GEI effect estimated from the first PC axes 1, 2 and 3 of the
AMMI analysis, respectively (Gauch and Zobel 1988, 1996; Crossa
et al. 1990). The cell-means which incorporate the main genotype
and environment and the GEI effects were also used to predict true
cell values. The RMSPD criterion was also utilized to validate the
AMMI model. The prediction assessment of the AMMI and GEAR
models were compared on the basis of the least RMSPD criterion
for the same data generated.

Analysis of variance (ANOVA) on raw- and predicted-data sets

ANOVAs were performed on two-replicate and four-replicate raw-
and predicted-data sets in both trials 1 and 2. For each trial, four
independent raw-data subsets were formed by randomly assigning
a replicate from each cell to a subset. The four subsets made a four-
replicate raw-data set. A four-replicate predicted-data set was ob-
tained by applying a GEAR model to each raw-data subset. Then an
ANOVA was performed on the four-replicate raw- and predicted-
data sets.

Likewise, two independent-data subsets were formed with the
mean of two random replications from each cell. The two subsets
made a two-replicate raw-data set. A two- replicate predicted-data
set was obtained by applying a GEAR model to the two raw-data
subsets. Then an ANOVA was performed on the two-replicate raw-
and predicted-data sets.

Data

Three sets of yield data were used for testing the models. Trial 1 is
an official multi-environment trial coordinated by the Spanish
National Seed Institute (INSPV) which comprises 16 triticale cul-
tivars with four replications evaluated at ten environments in Spain
during 1989. These data were utilized by Royo et al. (1993) for an
AMMI analysis. Besides the yield data, three environmental-
attribute variables (soil pH, annual rainfall and altitude) were re-
corded at each site. One genetic-attribute variable, the presence of
either a complete or substituted rye genome, was also recorded for
each triticale genotype. Trial 2 is a CIMMYT maize international
trial where eight maize genotypes were arranged in a randomized
complete block design with four replications at each of 33 sites
scattered over the tropical region in 1987. Trial 3 comprises 11
broad bean (»icia faba) genotypes arranged in a randomized
complete block design with three replications grown at ten environ-
ments in Southern Spain. Data of trial 3 were extracted from Cubero
and Flores (1995). No attribute-variables were available for trials
2 and 3.
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Results and discussion

Trial 1

The range of cell-means varied from 620 kg ha~1 for
genotype 8 at environment 10 up to 9340 kg ha~1
(about 15-times larger) for genotype 2 at environment
1. The range of environment-means was also large
(from 823 to 6753 kg ha~1) but that for genotype-
means was smaller (from 3564 to 4735 kg ha~1). The
relative magnitude of these ranges was reflected in the
analysis of variance where the mean squares for envi-
ronments were 37 times larger than for genotypes (data
not shown). Genotype, environment, and GEI effects
were all significant. The component of variance for the
GEI, p2

'%
"371388, was larger than the error compon-

ent, p2
%
"326878.

The RMSPD obtained from 100 random data-split-
ting and cross-validation approaches using r

.
"2 and

r
7
"2 for several GEAR and AMMI models are shown

in Table 1. The best AMMI model was AMMI
2
and the

worst AMMI
0
; in AMMI

0
the GEI variance compon-

ent was not involved in the prediction model. Of the
GEAR models (Strategy A, Eq. 4), G3S1, which in-
volves the first three PCG and the first PCE, was the
best predictor. The G3S1 model was also a slightly
better predictor than the best AMMI model, AMMI

2(504.8 kg ha~1 vs 507.2 kg ha~1). Other GEAR models
such as G2S2, G3S1 and G4S1 were superior to
AMMI

1
, the second best AMMI model. One advant-

age of the GEAR models is the flexibility of combining

Table 1 Root mean square-predicted difference (RMSPD) of trials 1,
2 and 3 based on 100 random data splits (r

.
"2, r

7
"2) for different

truncated AMMI models and GEAR models obtained using strat-
egy A (Eq. 4)

Models kg ha~1

Trial 1 Trial 2 Trial 3

AMMI model
AMMI

0
705.2 649.5 514.1

AMMI
1

530.0 665.7 459.1
AMMI

2
507.2 682.8 485.3

AMMI
3

546.2 701.2 495.0

GEAR model!
G3S3 526.7 — —
G2S2 524.6 — 469.2
G3S2 527.8 — 475.9
G3S1 504.8 646.0 472.2
G4S1 512.3 — 471.1
G2S1 — 641.5 467.8
G1S2 — 634.9 —
G1S3 — 632.2 —
Cell means 573.1 765.1 510.8

!Numbers after G and S refer to the number of the first PC retained
in the model using genotypes and environments as variables, respec-
tively

different numbers of PCs from the genotype and envi-
ronment variables. All GEAR models, as well as the
AMMI

1
—AMMI

3
models, were better predictors than

the cell-means model (573.1 kg ha~1).
Strategy B consists of entering the attribute variables

by stepwise regression into a pre-selected GEAR model
while the PCG and PCE variables are retained in the
model. In this case the best GEAR model, G3S1, was
pre-selected. Two options of strategy B were examined;
one included the first PC of the three environmental-
attribute variables (soil pH, altitude and annual rain-
fall) in the G3S1 model using stepwise regression; the
other involved entering both environmental-attribute
variables and the genetic-attribute variable (complete
or substituted rye genome) in the G3S1 model using
stepwise regression. The results from random data-
splits and cross-validation show that neither strategy B,
including only environmental attributes, nor strategy
B, including both environmental and genetic attributes,
improved the original G3S1 model (data not shown).
This suggests that the differential performance of
genotypes across environments, and reciprocally the
differential performance of environments through
genotypes, were sufficient to explain the true values of
cell means, and no margin was left for attribute-vari-
ables to improve the prediction.

Strategy C includes the first three PCGs and PCEs,
along the environmental- and genetic-attribute vari-
ables, via a stepwise regression procedure. This strategy
improved predictability over the model alone (with no
attribute-variables included). This seems to be a result
of the attribute-variables adding significant structural
information to the original model. Royo et al. (1993)
using data of trial 1 further explained GEI by incorpor-
ating soil pH values as a co-variate to AMMI models.

Trial 2

The 33 environment-yield means ranged from 2233 to
6950 kg ha~1 for environments 27 and 2, respectively.
This is reflected in the highly significant F value (88.1)
for environment effects. The genotype and GEI effects
were also significant, but the F value for GEI was
relatively small. The GEI variance component
(p2

'%
"98005) was about six times smaller than the error

variance (p2
%
"586577).

The best AMMI model for predicting cell means was
AMMI

0
(Table 1), due in part to the small p2

'%
/p2

%
ratio.

AMMI
0

values are estimated as the mean of several
observations and do not involve GEI. Thus, the ab-
sence of the GEI component (with a small value) is
compensated for by a larger reduction in the error
variance associated with the observation means that
estimate the AMMI

0
cells.

The best GEAR model was G1S3 (632.2 kg ha~1)
which includes the first PCG and the first three PCEs
(Table 1). All GEAR models were better predictors
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than any AMMI model. The cell-means model was
the poorest predictor of true values of genotype ]envi-
ronment combinations (765.1 kg ha~1), most likely
due to the large error-variance associated with the
observations.

Trial 3

The range of environmental and genotypic means was
relatively large, a fact which is reflected in the large
significant F values of those effects. The GEI effects
were also significant and the GEI variance component
was p2

'%
"132950, slightly smaller than the error vari-

ance (p2
%
"173376).

AMMI
1

was the best AMMI model and better than
all GEAR models (459.1 kg ha~1) (Table 1). However,
the RMSPDs of the five GEAR models were smaller
than the RMSPD of the second best AMMI model
(AMMI

2
), which suggests a good degree of robustness

of the GEAR models for cell-means prediction. In this
trial, predictions by the cell-means model were better
than those obtained by AMMI

0
. Comparison of the

efficiency of the AMMI
0

vs the cell-means model de-
pends on the r

.
p2
'%

/p2
%

ratio. The cell-means model is
better than AMMI

0
if the ratio is higher than 1, and

AMMI
0

is better if the ratio is less than 1.

Improving the predictive-values of the GEAR models

One way to improve the performance of the GEAR
models is to use the combined average of the predicted-
values of the best two or three GEAR models as a new
predictor for each cell. Only models having close
enough RMSPD values should be combined; otherwise
there is no improvement over the best model.

The RMSPD of the best models and their weighted
combination for each trial is shown in Table 2. A slight
improvement over the best model was achieved in trials
2 and 3 by assigning equal weights to the predicted
values of GEAR models having close RMSPDs.
Note that the RMSPDs of (G1S3#G1S2)/2 and
(G2S1#G2S2#G4S1)/3 were smaller than those of
the best models G1S3 in trial 2 and G2S1 in trial 3,
respectively. No improvement was found in trial 1 or
over the AMMI models of trial 3, most likely because
the RMSPDs of the combined models were not close
enough.

Another way to improve the predictive-value of the
GEAR models is by iterating the procedure. Cell pre-
dictions are calculated by executing the computer re-
gression program only once. However, improvements
in prediction were obtained by repeating the procedure,
assigning predicted values from first iteration to each
cell. The regression is then performed on the new pre-
dicted cells, keeping values of the PCG and PCE vari-
ables from the original data constant. Table 3 shows

Table 2 Root mean square-predicted difference (RMSPD) of trials 1,
2 and 3 based on 100 random data splits (r

.
"2, r

7
"2) for the best

truncated AMMI models, GEAR models, and the weighted combi-
nation

Trial Best models! Weighed combination RMSPD
of best models (kg ha~1)

1 G3S1 504.8
G4S1 512.3

(G3S1#G4S1)/2 506.6
(4*G3S1#G4S1)/5 505.0

2 G1S3 632.2
G1S2 634.9

(G1S3#G1S2)/2 630.6

3 AMMI
1

459.1
AMMI

2
485.3

(AMMI
1
#AMMI

2
)/2 467.1

3 G2S2 469.2
G4S1 471.1
G2S1 467.8

(G2S1#G2S2#G4S1)/3 464.3

!Numbers after G and S refer to the number of the first PC retained
in the model using genotypes and environments as variables, respec-
tively

Table 3 Root mean square-predicted difference (RMSPD) of trials 1,
2 and 3 based on 100 random data splits (r

.
"2, r

7
"2) for one-

iteration and two-iteration (first and second iteration) of the best
GEAR models

Trial One iteration First#second RMSPD
best model! iteration models! (kg ha~1)

1 G3S1 499.2
G3S1#G3S3 492.1
G3S1#G4S3 493.4
G3S1#G3S2 497.5
G3S1#G3S1 504.6

2 G1S3 629.6
G1S3#G3S3 624.8
G1S3#G3S2 625.5
G1S3#G3S1 627.6
G1S3#G2S2 625.2

3 G2S1 467.5
G2S1#G3S3 461.6
G2S1#G3S2 460.9
G2S1#G2S2 461.2

!Numbers after G and S refer to the number of the first PCG and
PCS retained in the model, respectively

the RMSPDs of the best one-iteration and two-iter-
ation models, and a sizeable prediction improvement
was achieved via the latter in all trials. The first three
PC variables were retained in the second iteration of
the best models, most likely because they explained
further significant variation. These results suggest that
a two-iteration model starting with the best one-
iteration model is a useful approach for prediction
assessment.
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Gain factor of GEAR and AMMI models

The mean square error of the model, MSE(model), is
the difference between the square of the RMSPD and
the error variance of the validation-data [VAR(valida-
tion)] (Crossa et al. 1990). Since means rather than
observations were used for validation, the VAR(valida-
tion) was estimated as the error-variance of the trial
divided by the number of replications for validation.
Estimates of VAR(validation) were 163 439, 293 288
and 173 376 for trials 1, 2 and 3, respectively. Thus, it
follows from Table 3 that the MSE(model) estimates of
the best two-iteration GEAR models were 78 723,
97 087 and 39 053 for trials 1, 2 and 3, respectively. The
approximate gain factor (GF) in the precision of the
model relative to the raw data has been established
(Gauch and Zobel 1988) as the error variance/
r
.
MSE(model) ratio. The computed GF for the best

two-iteration GEAR models in trials 1, 2 and 3 were
2.08, 3.02 and 2.22, respectively. Likewise the GF for
the best AMMI models in trials 1, 2 and 3 were 1.74,
2.28 and 2.32. The predictive-value of the GEAR mod-
els was better than that of the AMMI in trials 1 and 2,
but was slightly inferior in trial 3. These results show
that the efficiency of the GEAR models for predicting
cell-means is better than that of the AMMI models.

Analysis of variance (ANOVA)

Unlike the AMMI models, which partition out the GEI
variation into orthogonal components, the GEAR
models predict each cell individually by fitting the
regression model to a set of observations and do not
provide an orthogonal partition of the variation. How-
ever, ANOVAs were performed on predicted-data sets
with two and four replicates.

Table 4 shows the averages of mean squares (MS)
and variance components for genotypes, environments,
GEI and error effects from ANOVAs performed on 90
four-replicate and two-replicate raw- and predicted-
data sets in both trials 1 and 2. The error MS of the
predicted data were much smaller than those of the raw
data. This confirms the increase in precision of the
GEAR models which had also been shown by the
RMSPD criterion.

According to Crossa et al. (1990), the MSE(model)"
VAR(model)#(BIAS

.0$%-
)2, where MSE(model) is the

mean square of the difference between the predicted
and the true values of each cell, VAR(model) is the
variance of the error associated with the model (i.e.,
the error MS of the predicted data), and BIAS

.0$%-is the bias of the model. In the two-replicate data sets
of trial 1, the VAR(model)"50 300 (Table 4) and the
MSE(model) was estimated as 78 723, thus the esti-
mate of (BIAS

.0$%-
)2"28 423"likewise for trial 2, the

VAR(model)"65 194 (Table 4) and the MSE(model)"
97 087, thus the estimate of (BIAS

.0$%-
)2"31 893. In T
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Table 5 Pertinent mean squares
(MS) and variance components
(kg ha~1) from the ANOVAs
performed on the raw data of cell
means and predicted data in
trials 1 and 2

Sources of df Raw data of cell means! Predicted data"

variation
MS Variance MS Variance

component component

Trial 1
Genotype (G) 15 1 440 584 98 748 1 379 799 105 804
Environment (E) 9 53 427 023 3 310 870 53 469 249 3 321 718
G]E 135 453 108 371 388 321 761 296 611
Error 480 81 719# 81 719 25 150$ 25 150$

Trial 2
Genotype (G) 7 2 692 748 74 185 2 634 959 78 470
Environment (E) 32 12 916 493 1 583 980 12 925 260 1 609 971
G]E 224 244 650 98 005 45 449 12 852
Error 794 146 644# 146 644 32 597% 32 597%

! The raw data were formed with the cell means involving all replicates
"Predicted data were obtained by applying the G3S1#G3S3 and G1S3#G3S3 two-iteration models
to the raw data of cell means in trials 1 and 2, respectively
# The error MS associated with raw cell means is the error MS of the four-replicate raw-data sets
(Table 4) divided by 4
$Estimated from the error MS of the two-replicate predicted data sets of trial 1 (Table 4) divided by 2
% Estimated from the error MS of the two-replicate predicted data sets of trial 2 (Table 4) divided by 2

the four-replicate data sets of trial 1, the estimate of
VAR(model)"105940 (Table 4) and the MSE(model)"
146 975 (data not shown), so that the (BIAS

.0$%-
)2"

41 035; likewise for trial 2, the estimate of
VAR(model)"115 448 (Table 4) the MSE(model)"
163 365 (data not shown), so that the (BIAS

.0$%-
)2"

48 187. These biases are associated with the predicted
cell-means. The genotype and environment variance
components of the predicted data were similar to those
of the raw data. The GEI variances were smaller for
the predicted data than for the raw data (Table 4). The
reduction in GEI variances for the two-replicate and
four-replicate data sets was 20 and 22% in trial 1 and
98 and 89% in trial 2, respectively. The reduction of the
GEI variance can be partially explained by the bias
associated with the predicted cell-means. The bias
made the predicted cell-means approach the additive
model without interaction (AMMI

0
), and this favored

the reduction of the GEI. Furthermore, the bias did not
adversely effect model precision, since the deviation
from the true cell-means was compensated for by
a drastic decline in the error variance (Table 4), which
resulted in a more favorable RMSPD.

The MSE(model) associated with the mean of repli-
cates from predicted-data sets can be estimated as
VAR(model)/r#(BIAS

.0$%-
)2, where r is the number of

replicates. Thus, the MSE(model) of predicted means
from the two-replicate and four-replicate data sets were
53 573 and 67 520 in trial 1, and 64 490 and 89 028 in
trial 2, respectively. Therefore, when all observations
were used for predictions, the mean of the two pre-
dicted replicates (each based on the mean of two ran-
dom original replicates) was more precise than the
mean of the four predicted replicates (each based on
a single replicate). Taking this idea further, the best
data set for model prediction should be the complete

data set involving the mean of all replications. Since at
least one replication is needed to validate the model,
selection of the best model should be done by testing
models on data sets formed with the mean of r!1
random replicates, leaving the remaining replicate for
cross-validation. Cornelius and Crossa (1995) and Cor-
nelius et al. (1996) have also indicated that if a data-
splitting and cross-validation procedure is used,
r
.

should be r!1 (r
7
"1) to decrease the noise in the

modelling data. The model selected in this way should
be applied to the data formed with the cell-means
involving all replications. Furthermore, an ANOVA
can be performed on the predicted-data set.

Table 5 shows the ANOVAs of raw-data sets formed
with the cell means involving all replicates and the
ANOVAs of predicted-data sets obtained by applying
the G3S1#G3S3 and G1S3#G3S3 two-iteration
models to the raw-data sets in trials 1 and 2, respective-
ly. No direct estimate of the error MS exists because of
the lack of replications; however, it can be approxim-
ated by the error MS of the two-replicate predicted
data (Table 4) divided by two, because four replicates
instead of two were used for the model data. The
genotype and environment variance components of the
predicted data were slightly higher than those of the
raw data in trials 1 and 2, while the GEI variance of the
predicted data was reduced by 20% in trial 1 and 81%
in trial 2. The broad-sense heritability (h2

"
) based on

phenotypic means can be easily estimated from Table 5.
The h2

"
estimates of predicted data increased from 0.685

to 0.767 in trial 1 and from 0.908 to 0.983 in trial 2.
In trial 1, the genotype and environment predicted

means, obtained by applying the G3S1#G3S3 two-
iteration model to the data of raw cell-means, were
similar to the genotype and environment observed
means (data not shown).
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Appendix

The matrices and vectors of Eq. 3, y"l#xb#Gb#Ea#e, of Model 1 are:
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,

where the predicted value has, for this case, only one element b"y
ij
; elements of a@"[a

*1
, a

*2
,2 , a

*2
] are partial

regression coefficients of the first q PCE variables for genotype i; elements of vector b@"[b
+1

, b
+2

,2 , b
+,
] are the

partial regression coefficients of the first k PCG variables for environment j:

Conclusions

The results of the GEAR models applied to three multi-
environment cultivar trials differing in respect of
experiment size, the ratio of error variance to GEI
variance, the magnitude of genotype and environment
variances, the cultivated crop, and the area of cultiva-
tion suggest that the applicability of the GEAR models
may be broad. In addition, the best AMMI models for
prediction were also different for trials 1, 2 and
3 (AMMI

2
, AMMI

0
and AMMI

1
, respectively). The

results of this study indicate that the main advantages
of using GEAR and iterated GEAR models for predic-
ting the values (cells) of multi-environment cultivar
trials experiments are: (1) the accuracy of prediction

using cell-means is improved by allowing variables of
genotypes, environments and attributes to be com-
bined in the model, (2) GEI variance is reduced, and (3)
the precision of estimates of heritability for a trait is
increased.

Although not done in this study, the interaction
between PCGs and PCEs could have been included in
the GEAR model for predicting cell-means. Further
research is required to assess the efficiency of the
GEAR models for imputing values of cell-means that
are accidentally or intentionally missing from the two-
way table of genotype]environment. More research is
also needed to compare the prediction assessment of the
GEAR models with that of other multiplicative models
and with the best linear unbiased predictor (BLUP).
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The matrices included in T of Model 2 (Eq. 5, y"l#Xv#Tu#e) are:

EA
11

) )EA
1r

0 ) ) 0
) ) ) ) ) ) ) )
) ) ) ) ) ) ) )
) ) ) ) ) ) ) )

EA
j1
) ) EA

jr
) ) ) )

) ) ) ) ) ) ) )
) ) ) ) ) ) ) )
) ) ) ) ) ) ) )

H" EA
n1
) ) EA

nr
; K" 0 ) ) 0

0 ) ) 0 GA
11

) )GA
1s

) ) ) ) ) ) ) )
) ) ) ) ) ) ) )
) ) ) ) ) ) ) )
) ) ) ) GA

i1
) )GA

is) ) ) ) ) ) ) )
) ) ) ) ) ) ) )
) ) ) ) ) ) ) )
0 ) ) 0 GA

m1
) )GA

ms

,

where EA denotes the r5) environmental attribute measured in the j5) environment and GA is the s5) genotypic
attribute measured in the i5) genotype.
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